125 research outputs found

    The flavour projection of staggered fermions and the quarter-root trick

    Full text link
    It is shown that the flavour projection of staggered fermions can be written as a projection between the fields on four separate, but parallel, lattices, where the fields on each are modified forms of the standard staggered fermion field. Because the staggered Dirac operator acts equally on each lattice, it respects this flavour projection. We show that the system can be gauged in the usual fashion and that this does not interfere with flavour projection. We also consider the path integral, showing that, prior to flavour projection, it evaluates to the same form on each lattice and that this form is equal to that used in the quarter-root trick. The flavour projection leaves a path integral for a single flavour of field on each lattice.Comment: 8 pages, including title pag

    Transcriptional complex assembly represented in SBGN PD

    Get PDF
    This poster shows how transcriptional complex assembly can be represented in SBGN Process Description language. Example: LPS-induced TNF-alpha enhancer complex formation

    The in silico macrophage: toward a better understanding of inflammatory disease

    Get PDF
    Macrophages function as sentinel, cell-regulatory hubs capable of initiating, perpetuating and contributing to the resolution of an inflammatory response, following their activation from a resting state. Highly complex and varied gene expression programs within the macrophage enable such functional diversity. To investigate how programs of gene expression relate to the phenotypic attributes of the macrophage, the development of in silico modeling methods is needed. Such models need to cover multiple scales, from molecular pathways in cell-autonomous immunity and intercellular communication pathways in tissue inflammation to whole organism response pathways in systemic disease. Here, we highlight the potential of in silico macrophage modeling as an amenable and important yet under-exploited tool in aiding in our understanding of the immune inflammatory response. We also discuss how in silico macrophage modeling can help in future therapeutic strategies for modulating both the acute protective effects of inflammation (such as host defense and tissue repair) and the harmful chronic effects (such as autoimmune diseases).Comment: 7 pages plus 1 figur

    The genetics and screening of familial hypercholesterolaemia

    Get PDF

    The chiral and flavour projection of Dirac-Kahler fermions in the geometric discretization

    Full text link
    It is shown that an exact chiral symmetry can be described for Dirac-Kahler fermions using the two complexes of the geometric discretization. This principle is extended to describe exact flavour projection and it is shown that this necessitates the introduction of a new operator and two new structures of complex. To describe simultaneous chiral and flavour projection, eight complexes are needed in all and it is shown that projection leaves a single flavour of chiral field on each.Comment: v2: 17 pages, Latex. 5 images eps. Added references, reformatted and clarification of some point

    Use of logic theory in understanding regulatory pathway signaling in response to infection

    Get PDF
    Biological pathways link the molecular and cellular levels of biological activity and perform complex information processing seamlessly. Systems biology aims to combine an understanding of the cause–effect relationships of each individual interaction to build an understanding of the function of whole pathways. Therapies that target the ‘host’ biological processes in infectious diseases are often limited to the use of vaccines and biologics rather than small molecules. The development of host drug targets for small molecules is constrained by a limited knowledge of the underlying role of each target, particularly its potential to cause harmful side effects after targeting. By considering the combinatorial complexity of pathways from the outset, we can develop modeling tools that are better suited to analyzing large pathways, enabling us to identify new causal relationships. This could lead to new drug target strategies that beneficially disrupt host–pathogen interactions, minimizing the number of side effects. We introduce logic theory as part of a pathway modeling approach that can provide a new framework for understanding pathways and refine ‘host-based’ drug target identification strategies

    The Need for Standardizing Diagnosis, Treatment and Clinical Care of Cholecystitis and Biliary Colic in Gallbladder Disease

    Get PDF
    Gallstones affect 20% of the Western population and will grow in clinical significance as obesity and metabolic diseases become more prevalent. Gallbladder removal (cholecystectomy) is a common treatment for diseases caused by gallstones, with 1.2 million surgeries in the US each year, each costing USD 10,000. Gallbladder disease has a significant impact on the logistics and economics of healthcare. We discuss the two most common presentations of gallbladder disease (biliary colic and cholecystitis) and their pathophysiology, risk factors, signs and symptoms. We discuss the factors that affect clinical care, including diagnosis, treatment outcomes, surgical risk factors, quality of life and cost-efficacy. We highlight the importance of standardised guidelines and objective scoring systems in improving quality, consistency and compatibility across healthcare providers and in improving patient outcomes, collaborative opportunities and the cost-effectiveness of treatment. Guidelines and scoring only exist in select areas of the care pathway. Opportunities exist elsewhere in the care pathway
    • …
    corecore